
Heterocyclic compounds:
Furan
(Organic chemistry)
BSc. Part III (Hons.)

Dr. Manju Kumari Assistant Professor Chemistry department

Properties

1. Aromaticity

Properties

Aromaticity

- Furan have 4 C and 1 O, all are sp² hybridized
- sp² hybridization is planar, it makes a planar furan ring structure.
- Each ring atom also contains unhybridized p orbital that is perpendicular to the plane of σ bonds (plane of ring).
- Here p orbitals are parallel to each other, so overlapping btwn p orbitals is possible.
- the total nu of non bonding e- are 6 (4 of four C, 2 from one O)
- The resonance of 6 e- follows the Hückel's rule
- So the furan is aromatic.

Synthesis

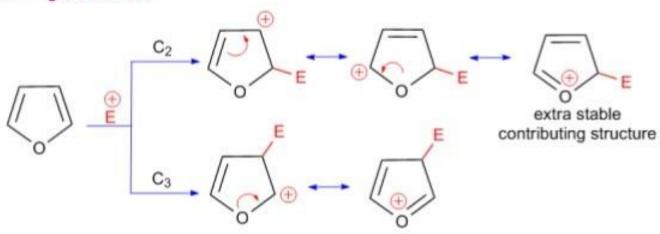
- Paal-Knorr synthesis of furan
- Acid catalysed ,cyclising dehydration of 1,4 dicarbonyl compounds.

$$0 = \left(\begin{array}{c} H^{+} \\ -2H_{2}O \end{array}\right)$$

1,4 - Dicarbonyl compounds

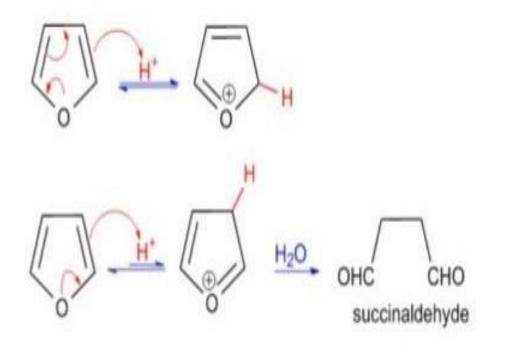
Synthesis

1. Paal-Knorr synthesis of furan


Mechanism

$$0 = \left(\begin{array}{c} H^{+} \\ \end{array}\right) + \left(\begin{array}{c} H^{0} \\ \end{array}\right) + \left(\begin{array}{c} H^{0} \\ \end{array}\right) + \left(\begin{array}{c} H^{+} \\ \end{array}\right) + \left(\begin{array}{c} H^{0} \\ \end{array}\right) + \left(\begin{array}$$

Reactions


1. Electrophilic substitution

furan undergoes electrophilic substitution reaction at 2nd position

2 reasons...

- C2 attack gives more resonance contributing structures than C3.
- Extra stable contributing structure generates upon C2 attack

2. Reduction